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The intramolecular addition of alkyl- and vinyllithiums to  Scheme 1
unactivated alkenes is rapidly growing in popularity as a preparative SPh 1 LDMAN 78" 7 SPh LI_37Bg3° U
method for cyclopentylmethyllithiums, their heterocyclic analogues >< 2—\\/7* R — R
and, less effectively, the corresponding six-membered #ings. R SPh 2 B laReH 93%
However, despite the highly significant work of Bailey and others, 1b R=Me 89%
the method still has considerable limitations. A major one is the

Li SC¢H,OMeP
lack of general methods for preparing the organolithium. For the -!;-[Ci\ } (pMeOCeH,S), C(\ o

most part, the generation methods can only be used for primary : R iR )

L . . 0. R=H T= -78°%t=10m 2a R=H 89% (trans/cis = 40/1)
organolithiums or those with special stabilizing features such as R=Me T= - 45° t=2 h 2b R=Me 94%
adjacent heteroatom groups that direct lithiations @rckaracter

of the carbon atom bearing the lithium. In most cases, the Scheme 2

(o] SPh 1, BuLi, +BuOK, -78°

organolithium is produced by halogetithium or tin—lithium (:/( Montmorillonite R TeT
exchange or by heteroatom-directed lithiation. Another limita- Me horclay 3. alik-bromide
L. ; . . . . oluene, A 730, 3 - ally
tion is the paucity of functionality in the cyclized product in most Ph U 1 s SPh
i -
cases. w LDMAN w 30m C[g
We now demonstrate the potential for very greatly extending 500 2. (PhS)
I . o . 4" 69% 5 : 2 6 54%
the versatility of this cyclization method (1) by generating the
organolithiums by reductive lithiation of phenyl thioethers with  scheme 3
aromatic radical anions such as lithium 1-dimethylaminonaphtha- OH | | BUOK/n-BuLi OLi i1 ., O
lenide (LDMAN) and 4,4di-tert-butylbiphenylide (LDBB¥-2 and =  (>2eq), THF =4 @
(2) by using allylic or homoallylic alcohol groups on the receiving e _-50°C.2h e N e Bl
alkene. This type of reductive lithiation allows virtually any kind 2 Lier, AT 2h 84% /
of organolithium to be generated, usually in a connective manner.
Furthermore, the allylic or homoallylic oxyanionic groups on the Scheme 4
alkenegreatly accelerate the reaction and lead in most cases to Li RS OH 1.Buli | H
i ovelizati =/ = 2/LDBB
completely stereoselecti cyclization at—78°. Of course, the - SPh — = 780t R SPh
cyclization product contains the useful alcohol function in addition RR R “sPh 3. (PhS),
to the lithiomethyl group. 7a R=R'=H 8a R=R'=H 90% t=12h 9a R=R'=H 73%
Scheme 1 shows what was, when it was performed, the first 7b R=Me, R'=H 8b R=Me, R'=H 87% t=12h 9b R=Me, R'=H 81%
example of a tertiary carbanionic cyclizaticand it occurs at a far 7c R=H, R'=Me 8c R=H, R'=Me 96% t=1h 9c R=H, R'=Me 86%
lower temperature than that at which such cyclizations are usually 7dR=R=Me 8d R=R'=Me 96% t=1h 9dR=R'=Me 80%

performed. It should be noted that the unique properties of sulfur ) ) ) ) )
allow rapid construction of the substratefrom the thioacetals of ~ ase. A single isomer is produced; the same cis stereochemistry
acetaldehyde and acetone. The high trans selectivity in the Petween the metallomethyl group and the oxyanionic group is
cyclization of the secondary organolithium derived frdm was manifested in the Mg case. o o
also found by Bailey for the same organolithium produced, however, ~AS illustrated in Scheme #,an allylic lithium oxyanionic group
by 1—Li exchangé. has a powerful accelerating effect in the intramolecular carbometa-
The versatility of reductive lithiation of phenyl thioethers in lation by an unconjugated alkyllithium. Most intramolecular car-
carbanionic cyclizations is further illustrated by generation of the POlithiations using primary alkyllithiums are performed in hexane/
fused cyclopentenylmethyllithium precursor 6fin a three-pot ether mixtures at room temperature. One of the strong advantages
sequence by ring-closure of vinyllithius) derived fromd, which of the use of reductive lithiation is that it allows organolithium
is itself readily produced fror8.57 (Scheme 2§. generation in THF in which cyclizations of primary alkyllithiums
Recent work from this laboratory has demonstrated that in the 0¢cur at—30°. However, the presence tfe lithium oxyanionic
cases of lithium-%2 and magnesiumené® cyclizations, an allylic group all(?ws cyclization of primary as well as tertiary alkyllithiums
oxyanionic group on the alkene being carbometalated not only t©© occur in THF at—78. _ _ _
facilitates the cyclization but also exerts stereochemical control, However, the most surprising result in Scheme 4 is that the single

sometimes quite high, as shown in Scheme 3 for the lithieme diastereomers isolated in all four cases have the oxygen function
and the function derived from the GH group on the opposite
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oxyanionic group is complete arid the opposite sense to that in
the case of intramolecular allylmetallic carbometalatids.

Even a cyclobutanoll 2, can be generated by this method in a
three-flask reaction from commercial reactants (Scheme 5). The
stereochemistry is again exclusively trans.

As shown in Scheme 6, an%prganolithium is subject to the
same type of stereochemical control by an allylic lithium oxyanionic
group but with somewhat less stereoselectivity. Substtatés
produced in one-pot from methyl isobutyraté\ote that the alkene
linkage is exo to the five-membered ring unlike the endo alkene
that is produced upon cyclization &f

In the cases of lithium oxyanionic participation in Scheme$3
the allylic lithium oxyanionic group is positioned such that it is a
ring substituent in the cyclized organolithium. The type of allylic
lithium oxyanionic participation shown in Scheme 7, in which the
alcohol function is positioned exo to the ring, is seen to be equally
effective at promoting cyclization. The substrdi® was readily
prepared by alkylatiol of the dianion of methallyl alcohol with
3-phenylthio-1-bromoproparié.

As shown in Scheme 8, flsomoallyliclithium oxyanion placed
exo to the forming ring is even more effective than the allylic
lithium oxyanionic group derived fror@ (Scheme 4) in accelerating
the cyclization, and the stereochemistry of the product is still trans.
The substrat@0was readily prepared by reduction of the carboxylic
acid obtained by alkylatidfi of the dianion of crotonic acid with
3-phenylthio-1-bromoproparté.On the other hand, we observed
an apparent retardation of cyclization when the homoallylic lithium
oxyanion was a substituent on the forming ring.

The combined powers of reductive lithiation of phenyl thioethers

to prepare substrates and of the accelerating and remarkable

directing effect of allylic and homoallylic lithium oxyanionic groups
should greatly increase the versatility of intramolecular carbolithia-
tion for cyclizations.
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